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Abstract. The solutions of a renormalized BCS equation are studied in three space dimensions in s, p
and d waves for finite-range separable potentials in the weak to medium coupling region. In the weak-
coupling limit, the present BCS model yields a small coherence length ξ and a large critical temperature,
Tc, appropriate for some high-Tc materials. The BCS gap, Tc, ξ and specific heat Cs(Tc) as a function
of zero-temperature condensation energy are found to exhibit potential-independent universal scalings.
The entropy, specific heat, spin susceptibility and penetration depth as a function of temperature exhibit
universal scaling below Tc in p and d waves.

PACS. 74.20.Fg BCS theory and its development – 74.72.-h High-Tc compounds

1 Introduction

At low temperature, a collection of weakly interacting
electrons spontaneously form large overlapping Cooper
pairs [1] according to the microscopic Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity [2,3]. There
has been renewed interest in this problem with the discov-
ery of enhanced superconductivity in alkali-metal-fulleride
compounds [4] and cuprates [5]. The fulleride compounds,
with critical temperature Tc up to ∼ 30−40 K, exhibit
superconductivity in three dimensions and have a rela-
tively small coherence length ξ: ξkF ∼ 10−100, with kF

the Fermi momentum. At zero temperature ξ is essentially
the pair radius. In the application of the BCS theory to
high-Tc materials, the serious challenge is to consistently
produce a large Tc and a small ξ in the weak-coupling re-
gion. The usual phonon-induced BCS model is unable to
produce a large Tc in the weak-coupling region.

Despite much effort, the normal state of the high-Tc su-
perconductors has not been satisfactorily understood. Un-
like the conventional superconductors, their normal state
exhibits peculiar properties. The thermodynamic and elec-
tromagnetic observables of these materials above Tc have
temperature dependencies which are very different from
those of a Fermi liquid [6]. There are controversies about
the appropriate microscopic Hamiltonian, pairing mecha-
nism, and gap parameter for them [6,7].

The BCS theory considers N electrons of spacing L,
interacting via a weak potential of short range r0 such that
r0 � L and r0 � ξ. When suitably scaled, most proper-
ties of the system should be insensitive to the details of the
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potential and be universal functions of the dimensionless
variable L/ξ [8]. In this work we study the weak-coupling
BCS problem in three dimensions for s, p, and d waves
with two objectives in mind. The first is to identify the
universal nature of the solution appropriate to high-Tc

superconductors. We would specially be interested to find
out if the weak-coupling BCS theory can explain some of
the universal behaviors of high-Tc materials independent
of the above-mentioned controversies. The second objec-
tive is to find out to what extent the universal nature of
the solution is modified in the presence of realistic finite-
range (nonlocal separable) potentials. Instead of solving
the BCS equation on the lattice with appropriate symme-
try, we solved the equations in the continuum. This pro-
cedure should suffice for present objectives. There is also
the possibility of Cooper pairing in non-s waves, such as,
p-wave pairing in superfluid 3He [9,10] and d-wave pairing
in some superconductors [5]. Hence the present discussion
of universality is also extended to p and d waves.

In place of the standard phonon-induced BCS model
we employ a renormalized BCS model in three dimensions
with separable and zero-range potentials, which has cer-
tain advantages. The standard BCS model yields the fol-
lowing linear correlation between Tc and TD, where TD

is the Debye temperature: Tc ≈ 1.13TD exp(−1/λ̄) [3],
where λ̄ is the effective strength of the phonon-induced
BCS interaction. Due to the above correlation with TD,
Tc of the standard BCS model is low. This correlation
between Tc and TD is fundamental in explaining the ob-
served isotope effect in conventional superconductors [3].
The high-Tc materials exhibit a very reduced and negligi-
ble isotope effect. The critical temperature of the present
renormalized BCS model can be large and appropriate
for the high-Tc materials in the weak-coupling region. In
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addition, the present model also produces an appropriate
Tc/TF ratio and a small ξ in the weak-coupling region in
accord with recent experiments [11] on high-Tc materials.

Previously, there have been studies of the solution of
BCS equations in terms of potential strength, V0, or the
pair scattering length in vacuum, a, employing a short-
range potential [12]. Such studies have not revealed the
universal nature of the transition from weak-to medium-
coupling. Here, we employ the zero-temperature conden-
sation energy per particle, ∆U , of the BCS condensate as
the reference variable for studying the problem. As ∆U
increases, one passes from weak to medium coupling. We
calculate the zero-temperature BCS gap∆(0), Tc, the spe-
cific heat per particle Cs(Tc) in different partial waves and
the zero-temperature pair size ξ in s wave. These observ-
ables obey robust universal scaling as functions of ∆U
valid over several decades in the weak-coupling region in-
dependent of the range of potential. Similar scalings were
not found when ∆(0), Tc, Cs(Tc) and ξ were considered
as a function of V0 or a as in reference [12].

We also calculate the temperature dependencies of dif-
ferent quantities, such as, the BCS gap ∆(T ), penetration
depth λs(T ), spin-susceptibility χs(T ), Cs(T ), internal en-
ergy per particle Us(T ) and entropy Ss(T ) for T < Tc. Of
these, the T dependencies of Ss(T ), Cs(T ), χs(T ), and
λs(T ) are interesting. For isotropic s wave, the BCS the-
ory yields exponential dependence on temperature as T →
0 for these observables independent of space dimension
[3,13]. The observed power-law dependence on tempera-
ture in some of these quantities [13–15] can be explained
with anisotropic gap function in non-s waves with node(s)
on the Fermi surface. We find universal power-law depen-
dence in non-s waves independent of the range or strength
of potential. For l 6= 0 we find

Ss(T )/Ss(Tc) ≈ (T/Tc)
βS (1)

Cs(T )/Cn(Tc) ≈ D(T/Tc)
βC (2)

χs(T )/χs(Tc) ≈ (T/Tc)
βχ (3)

∆λ(T ) ≡ (λs(T )− λs(0))/λs(0) ∼ (T/Tc)
βλ , (4)

valid for a wide range of temperature. The suffix n and s
refer to normal and superconducting states, respectively.
Similar power-law dependencies were predicted from an
analysis of experimental data [14] as well as from a calcu-
lation based on Eliashberg equation [15].

From the weak-coupling BCS theory we established
the following relations analytically: ∆(0)/

√
∆U =

√
8/3,

Tc/
√

∆U =
√

8/3A−1, G ≡ Cs(Tc)/
√

∆U =
√

2/3(π2

A−1 + 1.5AB2), ξ2 = ∆−2(0)/2 = 3/(16∆U), H ≡
(D−1) = ∆C/Cn(Tc) = 1.5A2B2 /π2, and ∆U/Un(Tc) =
1.5A2/π2 where ∆C = Cs(Tc) − Cn(Tc) and the univer-
sal constants A and B are defined by A ≡ ∆(0)/Tc and
B2 = −[d{∆(T )/∆(0)}2/d(T/Tc)]T=Tc . Unless the units
of the variables are explicitly mentioned, all energy (mo-
mentum) variables are expressed in units of EF(kF), such
that µ ≡ µ/EF, T ≡ T/TF, q ≡ q/kF, Eq ≡ Eq/EF,
EF = kF = kB = 1, etc., where µ is the chemical potential

and EF is the Fermi energy. The lengths are expressed in
units of k−1

F : ξ ≡ ξkF.
In Section 2 we derive the present renormalized BCS

and number equations. In Section 3 we present an analytic
study of the renormalized BCS equation and find several
universal relations among the observables. In Section 4
we present a numerical study of the present equation and
establish power-law temperature dependence of some of
the observables below Tc in non-s waves. Finally, in Section
5 we present a summary of our findings.

2 Renormalized BCS and number equations

We consider a weakly attractive short-range potential be-
tween electrons in the angular momentum state lm,

Vpq = −V0gplmgqlmYlm(Ωp)Ylm(Ωq), (5)

where g is the potential form factor and Ω (= θφ) repre-
sents the polar and azimuthal angles. This potential leads
to Cooper instability for any V0 and lm. In even (odd)
partial waves, pairing occurs in singlet (triplet) state gov-
erned by the Cooper equation

V −1
0 =

∑
q(q>1)

g2
qlm|Ylm(Ωq)|2(2εq − Ê)−1, (6)

with Bc ≡ (2 − Ê) the Cooper binding, εq = ~2q2/2m
where q is the wave number and m the electron mass.

At a finite temperature, T , one has the following BCS
gap and number equations for N electrons

∆p = −
∑
q

Vpq
∆q

2Eq
tanh

Eq

2T
, (7)

N =
∑
q

[
1−

εq − µ

Eq
tanh

Eq

2T

]
, (8)

whereEq = [(εq−µ)2+|∆q|2]1/2, with∆q the gap function
and µ the chemical potential. Though it is possible to have
a BCS condensate in a mixed angular momentum state,
here we assume, as in reference [10], that the condensate
is formed in a state of well-defined lm, so that ∆q has

the following anisotropic form: ∆q ≡ gqlm∆0

√
4πYlm(Ωq)

where ∆0 and gqlm are dimensionless. The BCS gap is
defined by ∆(T ) = gq(=1)lm∆0, which is the root-mean-
square average of ∆q on the Fermi surface. Equations
(6, 7) lead to the renormalized BCS equation

∑
q(q>1)

g2
qlm|Ylm|

2

2εq − Ê
−
∑
q

g2
qlm|Ylm|

2

2Eq
tanh

Eq

2T
= 0. (9)

The summation is evaluated according to∑
q

→
N

4π

3

4

∫ ∞
0

√
εqdεq

∫
dΩq, (10)
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where
∫

dΩ =
∫ 2π

0
dφ
∫ π

0
sin θdθ. Equations (8, 9) can be

explicitly written as∫
dΩq

∫
dεq
√
εq

[
1−

εq − µ

Eq
tanh

Eq

2T

]
=

16π

3
, (11)

∫
dΩq|Ylm|

2

[ ∫ ∞
1

dεq

√
εqg

2
qlm

εq − Ê
−

∫ ∞
0

dεq

√
εqg

2
qlm

Eq

× tanh
Eq

2T

]
= 0. (12)

The two terms in equation (11) or (12) under integral have
ultraviolet divergences. However, the difference between
these two terms is finite. In the absence of potential form
factors (gqlm = 1), these equations are completely inde-
pendent of potential and are governed by the observable
Bc. This is why these equations are called renormalized
BCS equations [7,16]. The quantity Bc plays the role of a
potential-independent coupling of interaction.

Now we calculate the critical temperature Tc of equa-
tion (12), in the special case gqlm = 1. This potential is
independent of a range parameter and is usually called a
zero-range potential. At T = Tc, (∆(Tc) = 0), equation
(12) can be analytically integrated to yield

Tc =
2exp(γ − 1)

π

√
2Bc ≈ 0.590

√
Bc, (13)

where γ = 0.57722... is the Euler constant. If TF is a few
thousand Kelvins, for a small Bc in the weak-coupling
region, one can have Tc > 100 K appropriate for some
high-Tc materials. The standard BCS model yields in this
case [3]

Tc

TD
=

exp(γ)

π

√
2Bc

TD
· (14)

To illustrate the advantage of equation (13) over (14)
in predicting a large Tc in the weak-coupling limit, let
us consider a specific example with TD = 300 K and
TF = 3000 K. In the standard BCS result (14), the weak-
coupling region is usually defined by Bc ≈ 1 meV or
Bc/TD ≈ 0.037. The smallness of Bc justifies the weak-
coupling limit and we take Bc ≤ 1 meV as defining
the weak-coupling region. Schrieffer [2] suggested that
Bc is the proper measure of coupling. He noted that
Bc = 0.1 meV is safely within the weak-coupling domain.
In this case for Bc = 1 meV = 0.0037 one obtains from
equation (14) that Tc is 46 K. From equation (13), we ob-
tain Tc = 0.036 = 107 K. This result reflects an enhance-
ment of Tc in the renormalized model. In order to provide
further evidence of the weak coupling limit of the present
renormalized model with Tc = 0.036, we solved the num-
ber equation (11) numerically for the chemical potential
µ and obtained µ = 1.000, which is in the weak-coupling
domain.

3 Analytic study of the renormalized BCS
equation

There is no cut-off in the renormalized BCS equation (12).
At T = 0 equation (12) can be solved analytically in the
absence of potential form factors: gqlm = 1. Then each
integral in equation (12) is divergent at the upper limit Λ,
but for a sufficiently large Λ the difference becomes finite.
Now equation (12) can be integrated in the weak-coupling
limit (µ = 1) to yield:

2
√
Λ− ln(e2Bc/8) = 2

√
Λ− 2 ln[e2∆(0)

√
4π/8] + lnF 2,

where

lnF = −

∫
dΩ|Ylm(Ω)|2 ln |Ylm(Ω)|

with e = 2.718281... For Λ → ∞ this leads to ∆(0) =
F
√

2Bc /(e
√
π). However, Tc is given by equation (13)

for all lm. In this case we have the universal constant
A ≡ ∆(0)/Tc = F

√
π/{2 exp(γ)}.

Though A is independent of interaction model and di-
mension of space, ∆(0) and Tc are dependent on them.
For example, for a s-wave zero-range interaction we have
∆(0) =

√
2Bc and Tc = exp(γ)

√
2Bc/π from a renormal-

ized BCS model in two dimensions [7], distinct from the
above three-dimensional relations. For a fixed coupling,
denoted by a Bc, we find an enhancement of Tc in two
dimensions over that in three dimensions by a factor of
e/2. In both two and three dimensions the renormalized
BCS equation provides an enhanced Tc over the standard
BCS Tc given by equation (14).

The entropy of the system is given by [3]

S(T ) = −2
∑
q

[(1− fq) ln(1− fq) + fq ln fq], (15)

where fq = 1/(1 + exp(Eq/T )).
The condensation energy per particle at T = 0 is given

by [3]

∆U ≡ |Us − Un| =
∑

q(q<1)

2ζq −
∑
q

(ζq −
ζ2
q

Eq
−

∆2
q

2Eq
),

where ζq = (εq − µ). In the absence of potential form
factors this can be evaluated to lead to [3]

∆U =
3

8

∫
dΩ∆2(0)|Ylm(Ω)|2,

which yields ∆(0)/
√

∆U =
√

8/3 for all lm. Using
the universal relation between ∆(0) and Tc, one obtains

Tc/
√

∆U =
√

8/3A−1. For all lm, Un(Tc) = π2T 2
c /4, so

that ∆U/Un(Tc) = 3A2/(2π2).
The superconducting specific heat per particle is given

by

Cs =
2

NT 2

∑
q

fq(1− fq)

(
E2

q −
1

2
T

d∆2
q

dT

)
. (16)
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The normal specific heat Cn is given by equation (16) with
∆q = 0. The jump in specific heat per particle at T = Tc

(∆(Tc) = 0), ∆C ≡ [Cs − Cn]Tc is given by [3]

∆C = −
1

NTc

∑
q

[
fq(1− fq)

d∆2
q

dT

]
Tc

. (17)

In the special case gqlm = 1, the radial integral in equation
(17) can be evaluated as in reference [3] and we get [3]

∆C = −
3

4Tc

∫
dΩq

∫
√
εqdεq

×

[
fq(1− fq)

d∆2(T )

dT

]
Tc

|Ylm(Ωq)|2. (18)

This leads to [3] ∆C=−(3/4)[d∆2(T )/dT ]T=Tc =(3/4)A2

B2Tc for all lm. From this, we obtain H ≡ (D − 1) =
∆C/Cn(Tc) ≡ 1.5A2B2/π2, where Cn(Tc) = π2Tc/2,
so that Cs(Tc) = (π2 + 1.5A2B2)Tc/2. Consequently,

Cs(Tc)/
√

∆U ≡ G =
√

2/3(π2A−1 + 1.5AB2). The nu-
merical values of the constants A, B, H, F and G are
given in Table 1.

The spin-susceptibility χ of the system is defined
by [10]

χ(T ) =
2µ2

N

T

∑
q

fq(1− fq), (19)

where µN is the nuclear magneton. At T=Tc, χs(T )=χn(T )
and it is appropriate to study the ratio χs(T )/χn(Tc).

Finally, it is also of interest to study the penetration
depth λ defined by [3]

λ−2(T ) = λ−2(0)

[
1−

2

NT

∑
q

fq(1− fq)

]
. (20)

In the numerical study of next section we shall calculate
∆λ(T ) = (λ(T )− λ(0))/λ(0).

The dimensionless s-wave pair radius defined by ξ2 =
〈ψq|r2|ψq〉/〈ψq|ψq〉, with the pair wave function ψq = gqlm
∆/(2Eq), can be evaluated by using r2 = −∇2

q. In the
weak-coupling limit, the zero-range analytic result of ref-
erence [7] leads to ξ2 = ∆−2(0)/2 = 3/(16∆U). Conse-
quently,

ξ =
1

√
2ATc

· (21)

4 Numerical study

Equations (11, 12) are solved numerically without approx-
imation in s, p and d waves for separable potentials with

dimensionless form factors gqlm = ε
l/2
q [α/(εq + α)](l+2)/2

with correct threshold behavior as q → 0, where α is
the range parameter. (Normally, one uses in Eq. (10)
dεq
√
εq = dεq [2,3].) Following references [3,10], we calcu-

lated ∆(0), Tc, Cs(Tc), the s-wave pair radius ξ2 at T = 0

U

(0
),

 T
c, 

C
s(T

c),
  

   
2
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5

10
3

10
1

10-1

10-3

10-5                                   10 -3                                   10 -1

C
s
(T

c
)

Tc

2

 
Fig. 1. Cs(Tc) (dashed line), Tc (dotted line), ∆(0) (dashed-
dotted line) for different lm and s-wave pair radius ξ2 (solid
line) versus zero-temperature condensation energy ∆U for dif-
ferent V0 and α (from 1 to∞). For Cs(Tc) and Tc there are six
distinct lines and for ∆(0) we have a single line for all α and lm.
The lines for Cs(Tc) (Tc) correspond to lm = 00, 11, (21, 22), 10,
and 20 from top to bottom (bottom to top).

Table 1. Numerical values of various constants and exponents
in different angular momentum states.

βS βC βχ βλ
lm F A B H G ≈ ≈ ≈ ≈
00 3.5449 1.764 1.74 1.43 11.11
10 2.8563 1.422 1.60 0.79 10.12 2 2 1.1
11 3.3300 1.658 1.68 1.18 10.59 3 2.6 2.4
20 2.7748 1.382 1.57 0.72 10.00 2 2 1.2 1.1
21 3.1006 1.544 1.63 0.96 10.24 2.1 2 1.4 1.5
22 3.1006 1.544 1.63 0.96 10.24 2.1 2 1.4 1.5

as well as ∆(T ), λ(T ), C(T ), S(T ), and U(T ) for different
V0 and α. In Figure 1 we plot ∆(0), Tc, Cs(Tc), and ξ2

versus ∆U and establish universal scalings mentioned be-
fore. The calculations were repeated by varying α from 1
to ∞ and we found Figure 1 to be insensitive to this vari-
ation for each lm. For l 6= 0, equations (11, 12) diverge for
α→∞ and calculations were performed for α = 1 to 10.
The increase in ∆U of Figure 1 corresponds to an increase
in coupling V0. We could plot the variables of Figure 1 in
terms of V0 as in reference [12]. Then each α leads to a dis-
tinct curve. However, if we express the variation in V0 by
a variation of an observable of the superconductor, such
as ∆U or Tc, universal potential-independent scalings are
obtained. In each case the exponent and prefactor of each
scaling relation are in excellent agreement with the ana-
lytic result obtained above without form factors.

The values of Tc should not arbitrarily increase with
coupling as Figure 1 may imply. With increased coupling
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Fig. 2. Entropy Ss(T )/Ss(Tc) versus T/Tc for different lm, V0,
and α between 1 to ∞. The curves are labelled by lm.
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Fig. 3. Same as Figure 2 for specific heat Cs(T )/Cn(Tc) versus
T/Tc.

the electron pairs form composite bosons which undergo
Bose condensation below T = Tc ≡ 0.218, for bosons
with twice the electron mass and half the electron den-
sity [12]. Hence the Tc curve of Figure 1 is only plotted
up to about Tc = 0.1. For a large class of unconventional
three-dimensional superconductors Tc has been estimated
to be 0.05 [11], where the universality of the present study
should hold. For a typical high-Tc material Tc = 0.04 and
from equation (21) we find pair-size ξ ≈ 10 in s wave.
Hence with the increase of Tc, ξ has reduced appropriately
in the weak coupling region as found experimentally.

Next we studied the temperature dependencies of
∆(T ), Ss(T ), Cs(T ), χs(T ), Us(T ), and λs(T ) for T < Tc

for different V0, and range α varying from 1 to ∞. We
found that ∆(T )/∆(0) versus T/Tc is an universal func-
tion for each lm independent of potential parameters. We
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/  
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Fig. 4. Same as Figure 2 for spin-susceptibility χs(T )/χs(Tc)
versus T/Tc.
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Fig. 5. Same as Figure 2 for ∆λ(T ) versus T/Tc.

find the universal fit ∆(T )/∆(0) ≈ B(1 − T/Tc)
1/2 valid

for T ≈ Tc with numerical values of B quoted in Table 1.
For s-wave BCS superconductors Ss(T ), Cs(T ), χs(T ), and
λs(T ) have exponential dependencies on T as T → 0. But
for non-s wave states, these variables have power-law de-
pendencies on T as observed in some materials [13–15]. In
Figures 2, 3, 4, and 5 we plot Ss(T )/Sn(Tc), Cs(T )/Cn(Tc),
χs(T )/χn(Tc), and ∆λ(T )/λ(0), respectively, versus T/Tc

where ∆λ(T ) = (λ(T )−λ(0))/λ(0). As commented in ref-
erence [10], χs will be significantly different from χn only
for even l. We have calculated χs only for l = 0 and 2.
Scalings (1)-(4) are established in Figures 2-5. The expo-
nents of these scalings are given in Table 1. In order to
find βC we also plotted Cs(T )/Cn(Tc) versus T/Tc on log
scale. That plot was used to calculate the exponent βC .
However, on log scale different curves nearly overlap and
hence that plot is not shown here. From Figure 3 we find
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that the zero of [Cs(T ) − Cn(T )] appears in all cases for
T/Tc ≈ 0.5. Moreover, all curves for superconducting spe-
cific heat meet at T/Tc ≈ 0.6. These two behaviors seems
to be typical for models based on BCS equations.

The constants in Table 1 for different lm satisfy
C00 > C11 > C21 = C22 > C10 > C20, where Clm stands
for F , A, B, H, and G. Hence the following sequence of
lm states represents the increase of anisotropy for the gap
function: 00, 11, (21,22), 10, and 20. From the plot of en-
tropy in Figure 2, we find that this sequence of lm also
represents the increase of disorder and consequently, a de-
crease in superconductivity or an approximation to the
normal state, as is clear from Figures 3-5. Because of ap-
proximation to more anisotropy and disorder, the observ-
ables for the normal state are closer to the superconduct-
ing l 6= 0 state than to the superconducting l = 0 state.

The exponents βS, βC and βχ are critical exponents
near T = Tc. Wilson [18] discussed the universal nature
of similar critical exponents in ferromagnetism and con-
cluded that the numerical value of those exponents de-
pend on the dimensionality of space and the symmetry of
the order parameter of phase transition. Recently, we have
calculated some of these exponents using the renormalized
BCS equation in two dimensions [17]. From these studies
it seems that these universal critical exponents of BCS
superconductivity are also determined by the dimension-
ality of space and the symmetry of the order parameter
∆q, although the present exponents do not belong to the
same universal class as Wilson’s exponents.

5 Conclusion

Through a numerical study of the renormalized weak-
coupling BCS equation in three dimensions in s, p and
d waves we have established robust scaling of ∆(0), Tc,
Cs(Tc), and ξ2, as a function of ∆U , independent of range
of a general separable potential. The T dependence of
Ss(T ), Cs(T ), χs(T ), and ∆λ(T ) below Tc in non-s waves
show power-law scalings distinct to some high-Tc materi-
als [13–15]. No power-law T dependence is found in s wave
for these observables. The universal nature of the solution
does not essentially change with the potential range and
remains valid for a zero-range potential. Hence the scal-
ings obtained in this study are supposed to remain valid
for other interactions and lattice symmetries in the BCS

model. In the weak-coupling limit the present solutions of
the renormalized BCS equations simulate typical high-Tc

values for the coherence length ξ, and Tc.
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